
Mining and Analysing String Constraints

〈Authors hidden due to double blind review〉

Affiliation hidden due to double blind review

Abstract. String constraint solving, and the underlying theory of word
equations, are highly interesting research topics both for practitioners
and theoreticians working in the wide area of satisfiability modulo theo-
ries. As string constraint solving algorithms, a.k.a. string solvers, gained
a more prominent role in the formal analysis of string-heavy programs,
especially in connection to symbolic code execution and security proto-
col verification, we can witness an ever-growing number of benchmarks
collecting string solving instances from real-world applications as well
as an ever-growing need for more efficient and reliable solvers, espe-
cially for the aforementioned real-world instances. Thus, it seems that
the string solving area (and the developers, theoreticians, and end-users
active in it) could greatly benefit from a better understanding and pro-
cessing of the existing string solving benchmarks. In this context, we
propose SMTQuery: an SMT-LIB benchmark analysis tool for string
constraints. SMTQuery is implemented in Python 3, and offers a col-
lection of analysis and information extraction tools for a comprehensive
data base of string benchmarks (presented in SMT-LIB format), based
on a novel SQL-centred language, called qlang.

1 Introduction

String solving is a research area in which one is interested in the mathematical
and algorithmic properties of systems of constraints involving (but not restricted
to) string variables and string constants. As such, string solving is part of the
general constraint satisfiability topic, where one is interested in the satisfiability
of formulae modulo logical theories over strings. Worth noting: in this specific
case, the constraint satisfiability problems are over an infinite domain. Moti-
vations for theoretical and practical investigations in this area come from the
verification of security-related programming errors (e.g., detecting security flaws
such as SQL injection and cross-site scripting attacks) or symbolic execution of
string-heavy languages. Excellent overviews of the main definitions and funda-
mental results as well as of the many recent developments related to the theory
and practice of string solving are provided by [2, 21].

Relevant to our work, on the practical side, a series of dedicated string con-
straint solvers were developed (see, e.g., Norn [1], Stranger [30], ABC [4],
Woorpje [16, 18], OSTRICH [14], CertiStr [23]), but also well-established
general-purpose SMT solvers (such as cvc5 [5] and Z3 [8, 19, 27]) started offer-
ing integrated string solving components. The efforts dedicated to improving the
performance of many of these solvers are still ongoing.

2 〈Authors hidden due to double blind review〉

Thus, having a reliable and curated collection of benchmarks containing
string constraints seems to be of foremost importance for the development and
evaluation of string solvers. The main benchmarks used in the evaluation of string
solvers are presented in detail by Kulczynski et al. [25]. These benchmarks were
extracted both from real-world and artificial scenarios. Some benchmarks based
on real-world scenarios are related to, e.g., symbolic execution of string-heavy
programs (Kaluza, PyEx, LeetCode), software verification (Norn), saniti-
zation (PISA), or to detection of software vulnerabilities caused by improper
string manipulation (AppScan, JOACO, Stranger). Some artificially pro-
duced benchmarks are based either on theoretical insights (Sloth, Woorpje,
Light Trau) or on fuzzing algorithms (BanditFuzz, StringFuzz).

1 (set -logic QF_SLIA)
2 (declare -fun v1 () String)
3 (declare -fun v2 () String)
4 (declare -fun v3 () Int)
5 (declare -fun ret () String)
6 (assert (= v2 "<"))
7 (assert (ite (str.contains v1 v2) (and (= v3 (str.indexof v1 v2 0)) (=

↪→ ret (str.substr v1 0 v3))) (= ret v1)))
8 (assert (or (str.contains ret "<") (str.contains ret ">")))
9 (check -sat)

Listing 1.1: Instance taken from the PISA set

In general, all these benchmarks contain systems of string constraints. For in-
stance, in Listing 1.1 we depict an instance from the PISA set [32]. It models a
conditional choice of a return string variable ret making assumptions on other
variables having the data type String. For examples of systems of string con-
straints, as found in the benchmarks, see, e.g., [6, 29].

Moreover, there exists now a unified string-logic standard as part of SMT-
LIB, and the tool ZaligVinder [25] brings together a set of relevant benchmarks
and introduces a uniform benchmarking framework. Nevertheless, there are still
some notable challenges related to string-solving benchmarks:

– the benchmarks are still largely unclassified w.r.t. satisfiability,
– a classification w.r.t. satisfiability is, thus, often based on older string solvers

verdicts — existing string solvers thus become oracles for developers of new
string solvers, but if the oracle has implementation errors then that error is
inherited through future developments,

– the benchmarks mostly originate from automated tools, which means that
they are not developed for human interpretation, making it even harder to
validate models/unsatisfiable results from string solvers,

– the benchmarks are still mostly uncategorized w.r.t. the type of string con-
straints they contain, and solvers addressing specific types of constraints
have to first preprocess the existing benchmarks and extract the relevant
constraints [9, 13]. Lacking this kind of classification makes harder the de-
velopment of algorithms targeting string constraints that (often) appear in
practice, since there is no obvious way of knowing what constraints are com-
mon nor their structure in different areas.

Research Tasks. In this context, we formulate two main research tasks addressing
the central issues related to curating and processing string-solving benchmarks.

Mining and Analysing String Constraints 3

1. Identify, store, and organize a comprehensive collection of benchmarks for
string solving as a database, allowing querying, exporting, and data mining
from the benchmarks, as well as an interface for running supported string
solvers on specific benchmarks, extracted w.r.t. certain requirements from
the entire database, and easily compare their results

2. Offer functionalities allowing the extension of the database with new bench-
marks, as well as the integration of new string solvers.

A tool answering these questions would be the first database tool in the area
of string solving which allows mining data from string-solving benchmarks and
fair and uniform comparison of string solvers on a selected set of benchmarks
displaying certain particularities. Such a tool could also open the way towards
deeper research tasks related to the evaluation of the solvers’ performance, such
as analysing the impact that the preprocessing part executed by a solver has on
the performance, or integrating external tools in the database, allowing the gen-
eration of new instances based on existing benchmarks. Also, such a tool would
fit in the direction of creating larger collections of more general benchmarks
containing SMT or SAT instances [22,29].

Our contribution. We propose SMTQuery: a benchmark analysis tool (acces-
sible at http://smtquery.github.io) for string constraints. It is focused on
benchmarks (and underlying theories) related to string solving, but can easily
be extended to cover other theories. It thereby offers the foundations for a more
comprehensive database containing insights of general SMT formulae. It should
also be mentioned that although SMTQuery has benchmarking capabilities, the
major new contribution of this paper is the data extraction system of SMT-LIB
benchmarks and further processing mechanisms.

SMTQuery is implemented in Python 3 and offers a collection of analysis
and data mining tools for the most comprehensive database of string bench-
marks (collected from the literature and presented in SMT-LIB format), based
on a novel SQL-centred language called qlang. Besides basic database manage-
ment, benchmark querying, and analysis capabilities, SMTQuery also offers an
interface for running and testing string solvers on the benchmarks. The results of
such runs can then be collected, stored, further analysed, and correlated to other
properties of the respective benchmarks (computed using SMTQuery database
queries). As such, SMTQuery offers solutions to our two research tasks. SMT-
Query also offers users a simple method for implementing and running their
own analysis on the benchmarks, as well as the possibility of collecting and inte-
grating the results of this analysis into the database. The user base, architectural
details, and use cases of SMTQuery are discussed in the rest of the paper and
the documentation of the tool.

2 Potential Applications of SMTQuery and User Base

We begin with examples from the literature, where this tool could have been
used. In particular, our goal in this section is to show that there is a demonstrable
need for analyses of the properties of benchmarks containing string constraints.

http://smtquery.github.io

4 〈Authors hidden due to double blind review〉

In the following, we overview several cases where hand-crafted benchmarks and
ad-hoc analyses were created and used. SMTQuery offers a more general and
easier-to-use framework for such analyses.

The first example for an ad-hoc analysis is [12], which motivates the Straight-
line fragment of string constraints by noting (as the product of the aforemen-
tioned analysis) that the Kaluza benchmark set falls within it. As the Kaluza
benchmarks become older and new sets emerge, it would be beneficial to have
similar updated analyses for these new sets of constraints, so that assumptions
about practical instances do not become out-of-date. SMTQuery is aimed to
make these much quicker and easier.

In [26] the authors argue that a new, hand-crafted benchmark, whose in-
stances fulfil some specific properties, is required to be able to compare their
procedure with existing solvers. This paper could have benefited from our tool. In
such cases, it would be faster and more transparent to use SMTQuery to extract
from existing benchmarks the instances exhibiting the addressed properties, and
showcase the novel algorithms on already existing, provably relevant instances.

A similar argument can be made related to [13], where the authors say “There
are no standard string benchmarks involving RegExes[...]”. Using SMTQuery
such benchmarks could be extracted from existing, provably relevant instances.

Nevertheless, in [9], a set of over 100000 benchmarks was analysed ad-hoc, to
extract string constraints containing only regular expressions and linear arith-
metic and detect their structural complexity, with the ultimate goal of producing
an efficient solver for such constraints. Such an analysis is inherently complex
and tedious. Howver, SMTQuery’s abilities potentially simplifies this process.

Therefore, it seems that analyses like those from the aforementioned exam-
ples required significant effort, replicated every time a new analysis is needed.
We expect SMTQuery to be used routinely by developers of string-solvers (like
those mentioned in, e.g., [2, 21]) to provide faster and transparent evaluation,
up-to-date context, and applicability evidence for their algorithms.

On the other hand, many theoreticians use string-solving to motivate their
works. SMTQuery can provide real evidence supporting this and also inform
future directions of study. In general, Hague [21] presents examples of research
groups likely to use SMTQuery. Concretely, a prototype version of SMTQuery
was already used in [17], in the context of combinatorial pattern matching, where
the authors were interested in extracting and understanding the structure of reg-
ular expressions used in practice (see also Section 4).

In conclusion, the cases overviewed above, as well as examples found in lit-
erature, immediately reveal three different communities of potential users of
SMTQuery: firstly, the community of string solver developers, for which it
eases the performance-analysis of specific solvers, on specific benchmarks, and,
thus, helps in discovering the strengths and weaknesses of each string solver,
for instance by identifying certain features of the input and correlating them to
the solver’s performance. Secondly, the theory community: SMTQuery facili-
tates the further understanding of structural properties of specific classes of word
equations, relevant in practice, which can be the focus of theoretical investiga-

Mining and Analysing String Constraints 5

benchmarks

id name

tracks

id name

instances

id name path

results

id result solver time

modeldate

validation results

id result date

(1, ∗) (1, 1) (1, ∗) (1, 1)

(0, ∗)

(1, 1)

(1, 1) (1, 1)

Figure 1: SMTQuery’s SQLite database schema

tions. Finally, the end-users, not explicitly mentioned before: entities who have
(or develop) use cases with string constraints, of relevance to their activities,
and want to understand better the nature of these benchmarks w.r.t. standard
structural measures for string constraints, or solve their instances as correctly
and efficiently as possible; for them, producing their own analysis tools or solvers
could be too expensive so they could integrate their cases in SMTQuery, and
use the offered methods to analyse it.

3 Architecture of SMTQuery

We begin the technical part of this paper by discussing the main ideas behind
the architecture of SMTQuery.

SMTQuery provides a series of mechanisms easing the access to a com-
prehensive set of benchmarks, based on an SQL-inspired query language called
qlang. The tool is built such that it can be run on an everyday workstation
within a terminal and it aims to provide answers to the user’s questions regard-
less of the time it takes to get them. To this extent, we have tried to make
SMTQuery as flexible as possible, giving easy-to-use entry-points to adding
custom algorithms for the analysis of string solvers or benchmarks without re-
quiring high-performance servers. Nevertheless, due to multiprocessing, we allow
running our tool in a server environment which speeds up the answering of the
asked questions, providing rather superb response times, as we discuss in Sec-
tion 4. The input is given in our novel query language called qlang, which
allows accessing and analysing benchmarks following the SMT-LIB standard re-
gardless of their origin, directly in a terminal prompt. To implement the main
structure of our database of string constraints-benchmarks, we proceeded as fol-
lows. The central information is stored in an SQLite database which consists
of five different tables, namely benchmarks, tracks, instances, results, and
validation results visualised in Figure 1. Each benchmark set contains mul-
tiple tracks (e.g., Kaluza contains different tracks, grouping instances w.r.t.
their size and satisfiability), which is reflected in our database structure via the
tables benchmarks and tracks. A track itself contains multiple linked instances,
stored within the instances table. Thus, the instances-table stores for each
record a file path and additional information, such as a unique name. Initially, a

6 〈Authors hidden due to double blind review〉

S ::= Select fs From d Where c | Extract fe From d Where c Apply Function
fs ::= Name | Hash | Content
fe ::= SMTLib | SMTPlot | . . .
d ::= * | Set | Set:Track | d, d
c ::= Predicate | (c And c) | (c Or c) | (Not c) | True | False

Figure 2: Syntax of qlang.

new benchmark set including its instances is always registered in our database.
Since we also provide an interface for running different solvers on the available
benchmarks, we allow storing the results of these runs in the database, in the
results table. These results are cross-validated w.r.t. the existing solvers and
the conclusions are stored in table validation results.

We provide an easy interface, allowing us to add additional solvers. Currently,
SMTQuery implements it for cvc5, Z3Str3, and Z3Seq, but can be extended
to include string solvers capable of reading/processing SMT-LIB files. To achieve
this, we reused the engine of ZaligVinder. We took the scheduling engine al-
lowing multiprocess runs of solvers, as well as the runners developed for the
benchmark framework. This includes special handling for different string-solvers
as explained in [25]. Furthermore, we reuse the cross-validation mechanism: Za-
ligVinder runs all competing solvers and whenever a server returns SAT, we
check the validity by asserting the model into the original instance and using
another solver to check correctness. In the case of UNSAT and when no other
solver returned a valid model, we use a majority vote upon all solvers’ results.

To allow gathering new insights about the benchmarks, SMTQuery offers
an interface permitting the definition of custom benchmark-analysis predicates,
which can directly interact with the SMT-LIB instances and the pre-calculated
information regarding them. To this end, for each instance contained in the
database, we additionally store an Abstract Syntax Tree (AST) within the file
system and have the possibility to augment each node of the tree with additional
information. These ASTs are the fundamental data structures we use.

The language qlang. Let us now go a bit more into details regarding our query
language qlang. As its main functionality, this language allows the selection
of instances (i.e., printing file names matching a query or exporting them after
potentially applying a modification). The syntax of qlang is given in Figure 2.

The semantic of a Select query is based on the data set d. We either choose
all benchmarks (*) or we are more precise in picking a particular benchmark set
respectively a corresponding track.

The selection is based on a Boolean expression c, constructed from basic
Predicates. Currently, SMTQuery implements several default predicates. For
instance, the default predicate hasWEQ selects the benchmarks containing at least
one word equation, or isSAT(solver) returns instances being declared satisfiable
by the particular solver. Worth noting, our interface allows also defining cus-
tom predicates. As far as the implementation is concerned, when evaluating a
predicate (as, for example, our default predicates) on an instance, this predi-
cate is applied bottom-up to the corresponding AST and its value is evaluated
in the root. Therefore, in the case of custom predicates, the user has to spec-

Mining and Analysing String Constraints 7

ify (just as we did for the default predicates) two functions, namely an apply-
and a merge-function. The apply-function specifies how the actual computa-
tion of the predicate is done for the information corresponding to a single node,
while the merge-function processes the data computed by the children of the
argument node. The related information attached to each node is called Intel-
Dictionary which will be explained in detail within the next paragraph. We
visualise this procedure in Figure 3. As a basic, yet illustrative example, con-
sider the word equation aYabX

.
= ZabbY where a and b are terminals and X,Y

and Z are variables. The calculation of the number of occurrences of each vari-
able in a node starts by counting these occurrences within the two sides of the
equation leading to the sets { (X, 1), (Y, 1) } and { (Y, 1), (Z, 1) }. Our root node
corresponds to the equality

.
=. We apply the merge-function, which adds up the

occurrences of variables in the children nodes of the current node, to obtain the
set { (X, 1), (Y, 2), (Z, 1) } which indeed is the desired data for the root node,
since

.
= does not contain any other variables. In general, the actual predicate

uses the computed data for an AST and returns either true or false, thus
allowing the selection of particular instances based on this return value. Contin-
uing our previous example, asking whether a word equation is quadratic via the
predicate isQuadratic can simply use the previously calculated data (number of
occurrences of the variables) and simply return true if and only if each variable
has at most two occurrences.

Finally, we use fs to choose a suitable output which can be the instance
name, the file’s hash value, or simply the SMT-LIB instance.

The Extract query allows exporting instances for which a Boolean expression
(again involving predicates) evaluates to true, just as described above for Select

queries. Additionally, while executing a Extract query, we can directly perform
modifications to the extracted instances using a Function. These functions are
applied (similarly to the case of predicates) node-wise, bottom-up, on the ASTs
corresponding to the processed instances. Therefore, for such queries, the user
specifies for the nodes an apply-function, which performs the modification of a
node. This technique allows, for example, applying simplification rules to specific
nodes or simply restricting an instance to a particular kind of string constraint

A

B C

...

f(B, ε) f(C, ε)

merge of intels B and C

f(A,)

Figure 3: Calculation of the IntelDictionary in our AST. f is the apply-
function, ε the corresponding neutral element, and A,B,C arbitrary nodes and
their IntelDictionary (boxes next to nodes) in our AST corresponding to an
SMT-LIB instruction.

8 〈Authors hidden due to double blind review〉

Expr ::= (Id, Kind, Decl, Sort, Params, Children, IntelDictionary)
Id ::= x for x ∈ N Kind ::= Variable | Other
Decl ::= and | or | not | . . . | = | <= | . . . | substr
Sort ::= String | Bool | RE | Integer
Params ::= [p] | [] p ::= x | p, p for x ∈ Z
Children ::= [c] | [] c ::= Expr | c, c

Figure 4: Internal representation of string constraints.

(e.g. word equations). Moreover, this interface allows the application of external
procedures on the whole AST, such as applying a fuzzer like StringFuzz [11]
to generate new instances having a similar structure to the extracted ones. Fi-
nally, the argument fe of an Extract query specifies the output format for the
matching (and potentially modified) instances, e.g. in SMT-LIB format or a
plot visualizing the tree-like structure. As a simple example, to count instances
which exhibit certain properties, one could use the predefined operation Count.
Notably, a function might also translate ASTs into different (not necessarily tree-
like) structures, providing, in a sense, an interpretation of these trees suitable
to the desired application.

As an example for a query, to obtain a list of all benchmarks containing
word equations and determined satisfiable by the string solver cvc5, we can
execute the query Select Name From * Where (hasWEQ and isSAT(CVC5)). A sec-
ond example is removing all other constraints than word equations from our
benchmarks and exporting the resulting SMT-LIB files. We use an Extract query
and pose Extract SMTLib From * Where hasWEQ Apply Restrict2WEQ1.

The AST structure. At the core of our implementation is the AST data struc-
ture, which is directly derived from the SMT-LIB instances. A string constraint
defined in SMT-LIB contains variable declarations and (potentially) multiple
asserts of formulae being based on string constraints connected by the common
connectives (note that the string constraints are not quantified in the respec-
tive standard). All asserted formulae have to be satisfied at the same time.
Based on this structure, our AST is a parse tree derived according to the for-
mal grammar from Figure 4, modelling each formula. As it can be seen there,
SMTQuery currently supports common string-constraints: word equations, lin-
ear arithmetic-over-lengths, regular-language-membership, Boolean constraints.
We use Z3 as input parser for SMT-LIB, so SMTQuery parses all constraints
Z3 handles. Our internal representation uses a generic expression to represent
constraints/types not covered explicitly yet in our grammar. Thus, as already
hinted at the end of the Introduction, SMTQuery can be canonically extended
to address other constraint types and, as such, other theories.

Let us now go into some of the technical details on which the parsing process
and the ASTs are based. We begin by explaining the grammar of Figure 4, which
lays the foundations for the internal representation of string constraints. In this
grammar, each expression Expr (which corresponds to an SMT-LIB formula) has
a unique Id, a named operator which can essentially be any operator available in
the SMT-LIB for string constraints, a Kind declaring whether the given expres-

1 A list of the available options is printed when executing our tool and available in
SMTQuery’s documentation.

Mining and Analysing String Constraints 9

sion is a single variable or not, and a Sort. Additionally, an expression might have
additional parameters; for instance, re.loop which corresponds to a bounded
Kleene star operation w.r.t. the parameters. Furthermore, an expression can have
multiple children which are again expressions. Finally, each expression stores a
unique IntelDictionary containing all the information computed using the
previously introduced predicates and stored in the database. This structure al-
lows accessing individual nodes quickly. To avoid recalculating the ASTs over
and over again, whenever needed, we use Pickle [28] to store the tree within
the file system. As such, an AST corresponding to a particular instance (file) is
available and can be enriched at any time. This allows quickly re-accessing of
stored information, since, e.g. for selecting all instances containing word equa-
tions, only the root node’s IntelDictionary has to be checked when using the
predicate hasWEQ.

One key aspect of SMTQuery’s architecture is the usage of the ASTs in
the definition of predicates, functions, and extractors. While defining meaningful
and efficient predicates/functions is an algorithmic problem, which needs to be
addressed individually for each predicate/function, our architecture offers both a
fundamental data structure, easily and naturally adaptable to specific scenarios,
as well as an accessible interface for defining and implementing those functions.

Summary. In Figure 5 we overview the overall architecture of SMTQuery. A
user poses a qlang query q to the command line interface. After parsing the
query q the core logic acquires relevant information about the selected bench-
marks and schedules solver runs at any time needed. The query q either has the
form Select fs From d Where c or Extract fe From d Where c Apply f as opposed
in the grammar shown in Figure 2. For the selection of the benchmarks d, we
query our SQLite database which returns related information (i.e. a pointer to
the AST, a unique id, and file-system path) for each requested instance. We apply
the predicate c to each instance obtained from the previous query, potentially
removing it from our selection. The predicate c makes use of the IntelDic-
tionary stored in our ASTs. When the AST is not available, the Z3’s output of
the parsed SMT-File is translated into our AST. Furthermore, if parts of the re-
quested data in the IntelDictionary are not available, we recalculate it on the

qlang query

Result

l
Logic

�
Database

�
Solvers

Predicates

Extractors

Functions

Filesystem

ú
SMT-LIB Instance

�∗

AST w/ intel

run solvers

store results

obtain
data

access files, write ASTs and extractor output

access files

Figure 5: Architectural overview of SMTQuery.

10 〈Authors hidden due to double blind review〉

fly and additionally enrich our AST with the newly obtained information. We do
not store the IntelDictionary within our SQLite database to stay as flexible
as possible. Since each node of our AST enriches the IntelDictionary of its
children, storing this information inside our database would result in storing a
link to each node. Secondly, adding new entries to the IntelDictionary would
require a modification of our database schema. A predicate c might also ask for
solver related information (e.g. isSAT(Z3Str3), asking for all instances declared
satisfiable by Z3Str3). In this case, we again query our SQLite database for
the requested information. Whenever the data is not available, we automatically
call the solver and store the corresponding results within the database, making
it accessible for further queries. The same step calls the verification mechanism
explained earlier. Posing a Select query to SMTQuery outputs the results being
specified by fs directly into the user’s terminal. An Extract query acts differently
depending on the extractor fe. As explained previously, an extractor can modify
matching instances based on its own needs. Therefore, fe might write data to
the file-system (e.g. a cactus plot using CactusPlot or an SMT-File using SMTLib)
or simply print a result to the user’s terminal (e.g. a summary of solver results
using InstanceTable). If the query contains a function f within it Apply-part,
the core logic performs modifications according to the specification given by f
before using the extractor fe.

The operations implemented so far in SMTQuery heavily differ in their run
time. Clearly, it is inherent that some operations require a rather long execution
time: firstly, we analyse a huge set of instances, and, secondly, the analysis we
apply might involve complicated predicates, which are provably computationally
hard. Our approach to speeding up this process is to allow the incremental
inclusion in the stored data of the results of various queries, on which one can
build efficiently more complex queries. Summing up, our goal was to build a tool
allowing information extraction from benchmarks of string constraints, using a
state of the art home-computer, without having to go deep into implementation
details. In the next second, we report the running times of executed queries.

For more detalis, see SMTQuery’s site http://smtquery.github.io.2

4 Use cases and examples

This section is devoted to examples of problems which can be addressed with
SMTQuery. We pose a task and describe the difficulties arising while solving it.
Afterwards, we show how certain problems can be addressed using SMTQuery
and support our approach with results and statics based on ZaligVinder’s
benchmark set.

Our experimental setup is built upon 114468 different SMT-LIB instances
gathered in [25] containing 19 different sets mainly stemming from real-world
applications and solver developers as explained in our introduction. Firstly, to

2 To ease the reviewing process, some examples are given in the Appendix.

http://smtquery.github.io

Mining and Analysing String Constraints 11

SMT-LIB 2.5 keyword SMT-LIB 2.6 keyword

int.to.str str.from int

str.to.int str.to int

str.in.re str.in re

str.to.re str.to re

re.nostr re.none

re.empty re.none

\x0n \u{n}
\xm \u{m}

Table 1: Translation from SMT-LIB 2.5 to 2.6 for n ∈ N≤9 and m ∈ N>9

incorporate the most recent release of cvc5, we manually translated these bench-
marks into SMT-LIB 2.6. The gathered instances were still in SMT-LIB 2.5 for-
mat which is no longer supported by cvc5. The translation itself is a straight-
forward renaming of the keywords and functions given in Table 1. We set up
SMTQuery on a server running Ubuntu 18.04.4 LTS with two AMD EPYC
7742 processors having a total of 128 cores and 2TB of memory. We integrated
cvc5’s version 1.0.1 and Z3’s version 4.10.1 binaries from their official sources.

Before we consider actual use cases, we use SMTQuery to get a better in-
tuition on the used benchmarks and obtain some insights. First, we initialise the
SQLite database such that it contains the schema shown in Figure 1 and links
all of our 114468 instances accordingly. This process took 4.44 minutes. We now
use our built-in predicates to observe that 80284 instances contain word equa-
tions (using the predicate hasWEQ), 57257 contain regular-expression membership
constraints, and 59763 contain linear arithmetic over string length. Additionally,
we discovered that 30393 contain higher-order functions (e.g. str.substring,
str.replace). The running time for each query without using the cache was
about 7.16 minutes. Using our pre-cached ASTs allows us to acquire the above
values in roughly 70 seconds.

The above values do not require satisfiability results of the embedded string
solvers. As mentioned in the previous section, all integrated solvers will be run
automatically. To quickly access cached results, our tool allows running all solvers
(including verification) in advance. The running times heavily depend on selected
timeouts and machine power, as well as the performance of the embedded solvers
(e.g. obtaining results takes longer if a solver times out more often). To give an
intuition on the running times using previously stored results, we discover that
cvc5 declares 71540 instances satisfiable. We obtain this value in 5.13 minutes.

We now move on to particular use cases. The first generic problem we address
is the following:

Problem I: Given a syntactically restricted subset of string constraints, deter-
mine instances belonging to this subset, and their distribution in benchmarks.

Many theory papers provide insightful results (i.e., algorithms, complexity bounds,
information about solution sets) for subclasses of string constraints [21]. Such
subclasses include those defined directly (e.g., constraints in solved-form, acyclic
or straight-line constraints) as well as indirectly (e.g., quadratic or regular word

12 〈Authors hidden due to double blind review〉

equations). Knowing how applicable such results resp. insights are in practice,
and thus whether it makes sense to incorporate them in the design and implemen-
tation of string solvers, requires first knowing how many string constraints belong
to those subclasses. By solving this, SMTQuery is valuable for researchers ap-
proaching subcases of string constraints, who could use our tool to see if that
subcase is relevant to string-constraint solving in practice, and if so, provide evi-
dence of this as motivation for their work. If the defined subcase is not prominent,
they could use it to guide changes to the definition, in order to make it more
applicable while preserving theoretical properties. This approach is also of value
to researchers developing string solvers who will benefit from knowing which
theoretical insights are most likely to be effective over a broad range of use-cases
and which properties to target with their own optimizations and innovations.

When dealing with the aforementioned problem it is worth noting that, firstly,
syntactic restrictions continually arise from a variety of (theory-)sources and
will not necessarily be formulated directly in the usual nomenclature of string
constraints and SMT-solvers. Consequently, simply deciding whether a string
constraint belongs to a subclass of interest can range from trivial to requiring
substantial processing. For example, it is not immediately clear given a single in-
stance, whether e.g. the systems of word equations arising when solving it are all
quadratic. Secondly, the set of benchmarks is also regularly being expanded and
updated (and some might also depreciate). Thirdly, many modern string solvers
rewrite string constraints in a preprocessing stage or even constantly while solv-
ing them. Obtaining realistic data, therefore, requires taking into account the
effects of rewriting processes concerning syntactic subsets.

Currently, there are no tools capable of properly addressing this problem
and these challenges. Without SMTQuery, understanding e.g. how many string
constraints belong to various relevant fragments is something which would have
required significant effort for just a single case. In this context, it does not come
as a surprise to see that such analyses have not been yet carried out even for
major subclasses of string constraints.

We can give two concrete cases of the problem stated in this generic example.
Firstly, we investigate the distribution of quadratic equations (a class of word
equations, which can be solved using a technique inspired by Levi’s lemma [15])
in the benchmarks. An analysis might result in the following questions:

1. For each benchmark, determine all instances consisting of quadratic equations
only: Select Name From * Where isQuadratic. In 63 seconds using our cached
AST SMTQuery outputs a list of all 47796 matching instances.

2. Count how many such instances are in each benchmark, and compute the
ratio between the number of quadratic instances and the overall number of
instances in each benchmark (e.g. for JOACO-Suite):

Extract Count From joacosuite Where isQuadratic.

After less than 1 second SMTQuery reports “Total matching instances: 51 of

↪→ 94 within the selected set (54.25%)”.

Mining and Analysing String Constraints 13

Secondly, motivated by the work performed in [7, 9], we want to determine
all instances containing regular-membership predicates, and their distribution
within benchmarks.

1. For each benchmark, determine all instances containing at least one regular-
membership predicate: Select Name From * Where hasRegex. After roughly 70
seconds SMTQuery prints a list of 57257 containing regular-membership
predicates.

2. Count how many such instances are in each benchmark, and compute the ratio
between the number of instances containing regex-membership predicates and
the overall number of instances in each benchmark (e.g. for JOACO-Suite):

Extract Count From joacosuite Where hasRegex.

After less than 1 second we obtain the output “Total matching instances: 76

↪→ of 94 within the selected set (80.85%)”.
3. We are interested in gathering knowledge about how many of the instances

containing regex-membership predicates fall into the PSPACE-complete frag-
ment of simple regex-membership predicates (i.e. predicates of the form x ∈̇R,
where x is a variable and R is a regular expression not containing comple-
ments). We pose:

Extract Count From * Where isSimpleRegex.

SMTQuery returns “Total matching instances: 24486 of 114468 within the selected

↪→ set (21.39%).” in 2.10 minutes.

We move on to a second generic problem.

Problem II: For a given string solver, understand the properties of instances on
which it performs particularly well, and on which it performs poorly.

Having insights are valuable for designing new and improving or optimising
existing string solvers. It is also valuable for constructing portfolio solvers who
simply choose a well-performing algorithm for a particular case (see e.g. [27]).

Clearly, some challenges stem from the same issues discussed in the previous
example. Moreover, once we computed a set of instances on which a solver per-
forms well and a set of instances on which that solver performs poorly, we need
a reliable analysis tool to find properties which separate the two sets.

Tools already exist which assist the comparison of string solvers in terms of di-
rectly evaluating how they perform over a set or sets of benchmarks (e.g., [10,25]).
This is sufficient for producing evidence of their effectiveness within the cur-
rent landscape of solvers. However, without SMTQuery, it is difficult even to
understand the character of particular benchmarks beyond very superficial ob-
servations. Thus, existing tools do not provide insights about why or when a
given solver performs well. Our tool is the first to facilitate analyses of the form
“Solver X performs best on string constraints containing complex word equa-
tions” where “complex” can be formally defined by a well-motivated criterion
obtained by using SMTQuery.

We can give a concrete case related to the problem stated in this example.
We would be interested in finding the set C of all the instances on which cvc5

14 〈Authors hidden due to double blind review〉

Waiting f o r r e s u l t s . . .
Ins tance Result CVC5 Time CVC5 Result Z3Seq Time

↪→ Z3Seq Result Z3Str3 Time Z3Str3
−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−−−−

↪→ −−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−−−−−−
p i sa : p i sa : pisa −011. smt2 S a t i s f i e d 0.00897606 S a t i s f i e d

↪→ 0.0259043 S a t i s f i e d 0.0344819
p i sa : p i sa : pisa −009. smt2 S a t i s f i e d 0.0191097 S a t i s f i e d

↪→ 0.0276228 S a t i s f i e d 0.028013
p i sa : p i sa : pisa −010. smt2 S a t i s f i e d 0.0167181 S a t i s f i e d

↪→ 0.0258694 S a t i s f i e d 0.0266274
p i sa : p i sa : pisa −002. smt2 S a t i s f i e d 0.0235912 S a t i s f i e d

↪→ 0.116755 S a t i s f i e d 0.0386019
p i sa : p i sa : pisa −000. smt2 S a t i s f i e d 0.0695572 S a t i s f i e d

↪→ 0.0426866 S a t i s f i e d 0.0492182
. . .

Figure 6: Cut terminal output for the query posed in Problem II

provides a correct answer and Z3Str3 either provides a wrong answer or is slower
in providing the correct answer and the instances the set Z of all the instances
on which Z3Str3 provides a correct answer and cvc5 either provides a wrong
answer or is slower in providing the correct answer. Then, for each of these sets,
detect the number (and distribution) of instances containing regular-membership
predicates. A typical analysis using SMTQuery might look as follows:

1. Collect, for each instance, the answers given by all solvers included in our
tool. The supposedly-correct answer for this instance is the one given by the
majority of these solvers in UNSAT cases and indicated by a correct model in
case of SAT instances. We pose

Extract InstanceTable From * Where ((isCorrect(CVC5) and

isCorrect(Z3Str3)) and isCorrect(Z3Seq))

to SMTQuery. After 17 minutes our terminal displays the table shown in
Figure 6. The output might differ depending on the initialisation of the in-
stances and scheduling of the processes.

2. Select all instances where cvc5 gives the right answer and either Z3Str3
returns the wrong answer or it gives the right answer slower:

Select Name From * Where ((isCorrect(CVC5) and (not isCorrect(

Z3Str3))) or (isCorrect(Z3Str3) and isFaster(CVC5,Z3Str3))).

We get a list of all 94676 matching instances within our benchmarks. This
process took about 15 minutes.

3. Count how many of the instances computed in step 2 contain regular-membership
predicates:

Extract Count From * Where (((isCorrect(CVC5) and (not

isCorrect(Z3Str3))) or (isCorrect(Z3Str3) and isFaster(CVC5,

Z3Str3))) and hasRegex).

Again, in roughly 15 minutes we get the following answer: “Total matching

↪→ instances: 47070 of 114468 within the selected set (41.12%)”.
4. Select for Z3Str3 all instances where Z3Str3 gives the right answer and

either cvc5 gives the wrong answer or it gives the right answer slower:

Select Name From * Where ((isCorrect(Z3Str3) and (not isCorrect

(CVC5))) or (isCorrect(CVC5) and isFaster(Z3Str3,CVC5))).

Mining and Analysing String Constraints 15

0 10000 20000 30000 40000 50000
0

2000

4000

6000

CVC5
Z3Seq

Z3Str3

Figure 7: Cactus plot for query Extract CactusPlot From * Where hasRegex.

SMTQuery prints a list of 18596 instances within 16 minutes.
5. Count how many of the instances computed in step 4 contain regular-membership

predicates:

Extract Count From * Where (((isCorrect(Z3Str3) and (not

isCorrect(CVC5))) or (isCorrect(CVC5) and isFaster(Z3Str3,CVC5)

)) and hasRegex).

In 17 minutes SMTQuery responds with “Total matching instances: 9189 of

↪→ 114468 within the selected set (8.02%).”

This analysis gives and substantiates an intuition that cvc5 is more reliable
than Z3 and seems to have a better performance when targeting instances that
contain regular-membership predicates. SMTQuery offers the export of cactus
plots allowing review of the results in a visually appealing way. Figure 7 depicts
the cactus plot obtained by posing the query Extract CactusPlot From * Where

hasRegex. We obtained this plot in roughly 3 minutes. The cactus plot shows
the cumulative time in seconds taken by each solver on all cases in increasing
order of runtime. Solvers that are further to the right and closer to the bottom
of the plot have better performance. The plot itself shows that cvc5 seems to
implement the most successful algorithm when targeting regular-membership
predicates w.r.t. the analysed instances and embedded solvers.

We have presented so far two out of many different possibilities of leveraging
information out of a set of benchmarks. Another use case could be the devel-
opment of a learning algorithm which detects the best solver, from a given set,
for each instance by simply extracting features of the instances and establish a
correspondence between these features and the fastest solver which produces a
correct answer on that instance. Thus, we could obtain decision trees guiding
the selection of solvers on certain data, according to some numerical features of
the instance, which can be extracted with our tool.

We conclude this section by giving a concrete example where a prototype
version of our solver was used in a theoretical investigation (rather unrelated to
the area of string solving). In [17], motivated by applications to the processing
of event streams [3,20,24,31], the authors study occurrences of subsequences in

16 〈Authors hidden due to double blind review〉

texts, such that the gaps between the positions of the text matching the symbols
of the searched subsequences are subject to both regular and length constraints.
To decide how to represent these constraints, the authors of [17] were interested
in the regular and length constraints present in benchmarks (appearing alone
or in conjunction with other types of constraints). In particular, regarding the
regular constraints, the respective investigation was focused on their complexity
(length of the regex specifying them, as well the number of states in a minimal
deterministic finite automation accepting them). This investigation considered
the Kaluza benchmark only, and the following interesting results were reported,
whose extraction was done using SMTQuery. The Kaluza benchmark contains
47305 string solving instances, out of which 20740 (i.e., around 43%) contain
regular constraints. In total, there are 207038 regular constraints (specified as
regular expressions) appearing in these instances. The length of each of these
regexes is upper bounded by 20, but the average length of a regex occurring in
Kaluza is ≤ 8. Additional processing of the extracted regexes showed that the
NFAs cannonically constructed from them have, in average, 17 states, but 99%
of the minimal DFAs corresponding to these regexes have at most 20 states,
and the average number of states in these minimal DFAs is lower than 11. The
authors of [17] also used SMTQuery to investigate how often both regular
and length constraints are used in conjunction in the Kaluza benchmark and
reported the following results. In this benchmark, 20740 instances contain regular
constraints (approximatively 43% of the total number of instances) and 21246
instances contain length constraints (approximatively 44%), and there are 19812
instances which contain both types of constraints; this corresponds to 95% of the
instances containing regular constraints, and to 93% of the instances containing
length constraints. Based on the information extracted using SMTQuery, the
authors of [17] motivate the choice of the model they use to represent regular
constraints in their setting (by DFAs rather than regexes) as well as their choice
to accommodate both regular and length constraints simultaneously.

5 Conclusion and Future Work

In this paper, we have introduced a benchmark analysis framework called SMT-
Query to analyse string constraints and string solvers. Our toolbox provides
a query language allowing the exploration of a custom benchmark set. SMT-
Query provides several useful functions, predicates, and extractors for straight
use, within custom queries, and we are continuously working towards enrich-
ing the current toolbox with more such operations. Other natural directions of
development are to also offer built-in coverage for more general theories (e.g.,
including the closely related theory of bit-vectors), which are currently treated
as generic, as well as to offer good mechanisms for debugging, logging, and diag-
nostics, especially in the context of user-defined functions. Additionally, our goal
is to speed up all sorts of queries, e.g. by smartly combining predicates using the
SQLite database or using pre-calculated data more effectively.

Mining and Analysing String Constraints 17

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.F., Hoĺık, L., Rezine, A., Rümmer, P., Stenman,
J.: Norn: An SMT solver for string constraints. In: International conference on
Computer Aided Verification. pp. 462–469. Springer (2015)

2. Amadini, R.: A survey on string constraint solving. ACM Computing Surveys
(CSUR) 55(1), 1–38 (2021)

3. Artikis, A., Margara, A., Ugarte, M., Vansummeren, S., Weidlich, M.: Complex
event recognition languages: Tutorial. In: Proc. DEBS 2017. pp. 7–10 (2017).
https://doi.org/10.1145/3093742.3095106

4. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Computer Aided Verification: 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. pp. 255–272.
Springer (2015)

5. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al.: cvc5: a versatile and
industrial-strength smt solver. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 415–442. Springer (2022)

6. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-lib standard: Version 2.5.
Available at: https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-
r2015-06-28.pdf (2015)

7. Berzish, M., Day, J.D., Ganesh, V., Kulczynski, M., Manea, F., Mora, F., Nowotka,
D.: String theories involving regular membership predicates: From practice to the-
ory and back. In: WORDS 2021. pp. 50–64. Springer (2021)

8. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: A string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp.
55–59. IEEE (2017)

9. Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J.D., Nowotka, D., Ganesh,
V.: An SMT Solver for Regular Expressions and Linear Arithmetic over String
Length. In: CAV 2021. pp. 289–312. Springer (2021)

10. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on sv-comp 2016). In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 887–904. Springer (2016)

11. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: Stringfuzz: A
fuzzer for string solvers. In: CAV 2018. pp. 45–51. Springer (2018)

12. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the replaceall function. Proc. ACM Program. Lang. 2(POPL),
3:1–3:29 (2018)

13. Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin, A.W.,
Rümmer, P., Wu, Z.: Solving string constraints with regex-dependent functions
through transducers with priorities and variables. CoRR abs/2111.04298 (2021,
to appear in POPL 2022)

14. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL), 49:1–49:30 (2019)

15. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Handbook of formal
languages, pp. 329–438. Springer (1997)

16. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: On
solving word equations using SAT. In: International Conference on Reachability
Problems. pp. 93–106. Springer (2019)

https://doi.org/10.1145/3093742.3095106

18 〈Authors hidden due to double blind review〉

17. Day, J.D., Kosche, M., Manea, F., Schmid, M.L.: Subsequences with gap
constraints: Complexity bounds for matching and analysis problems. CoRR
abs/2206.13896 (2022). https://doi.org/10.48550/ARXIV.2206.13896, to appear
in the Proceedings of ISAAC 2022.

18. Day, J.D., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Rule-based
word equation solving. In: Proceedings of the 8th International Conference on
Formal Methods in Software Engineering. pp. 87–97 (2020)

19. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008. pp.
337–340. Springer (2008)

20. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis, M.N.: Com-
plex event recognition in the big data era: a survey. VLDB J. 29(1), 313–352 (2020).
https://doi.org/10.1007/s00778-019-00557-w

21. Hague, M.: Strings at MOSCA. ACM SIGLOG News 6(4), 4–22 (2019)
22. Heule, M., Jarvisalo, M., Suda, M., Iser, M., Balyo, T., Froleyks, N.: SAT Com-

petition ’21 benchmarks. https://satcompetition.github.io/2021/downloads.
html, accessed: 2022-01-17

23. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: A certified string solver
(technical report). CoRR abs/2112.06039 (2021, to appear in CPP 2022)

24. Kleest-Meißner, S., Sattler, R., Schmid, M.L., Schweikardt, N., Weidlich, M.:
Discovering event queries from traces: Laying foundations for subsequence-
queries with wildcards and gap-size constraints. In: Proc. ICDT 2022. LIPIcs,
vol. 220, pp. 18:1–18:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.ICDT.2022.18

25. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: ZaligVinder: A generic test
framework for string solvers. J. Software: Evolution and Process p. e2400 (2021)

26. Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations,
regular expressions and length constraints. In: APLAS. Lecture Notes in Computer
Science, vol. 11275, pp. 350–372. Springer (2018)

27. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A Multi-
armed String Solver. In: FM 2021. pp. 389–406. Springer (2021)

28. Python Software Foundation: pickle — python object serialization. https://docs.
python.org/3/library/pickle.html, accessed: 2022-01-21

29. The SMT-LIB Initiative: The SMT Library. https://smtlib.cs.uiowa.edu/

benchmarks.shtml, accessed: 2022-01-17
30. Yu, F., Alkhalaf, M., Bultan, T.: STRANGER: An Automata-based String Analy-

sis Tool for PHP. In: Proceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 154–157. TACAS’10,
Springer-Verlag, Berlin, Heidelberg (2010)

31. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive
queries in complex event processing. In: Proc. SIGMOD 2014. pp. 217–228 (2014).
https://doi.org/10.1145/2588555.2593671

32. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A z3-based string solver for web appli-
cation analysis. In: ESEC/SIGSOFT FSE 2013. pp. 114–124 (2013)

https://doi.org/10.48550/ARXIV.2206.13896
https://doi.org/10.1007/s00778-019-00557-w
https://satcompetition.github.io/2021/downloads.html
https://satcompetition.github.io/2021/downloads.html
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://doi.org/10.1145/2588555.2593671

Mining and Analysing String Constraints 19

A Appendix

For clarity, we restate here the link to SMTQuery: http://smtquery.github.
io.

The bibliographic references in the Appendix refer to the list at its end (and
they are given in a different style to avoid confusions).

A.1 qlang predicates, functions, and extractors

In our implementation of SMTQuery, a predicate is based on an interface in
smtquery.smtcon.exprfun which corresponds to collecting data for the newly
defined predicate. After providing a name and a version number, the user imple-
ments an apply- and a merge-function as mentioned before. The apply-function
receives an AST expression and a pointer to previously calculated data and per-
forms requested modifications to the data. Since the apply function computes
the information bottom-up within our AST, the user also provides a neutral el-
ement for this computation, which might be an empty dictionary, an empty list,
or simply an integer. The interfaces also requires the implementation of a merge-
function which aims to combine the data received from children-expressions
within the AST in a node. Once this information gathering interface is imple-
mented, we register the application within smtquery.intel.plugin.probes.intels

by providing a unique identifier which points to a tuple consisting of the function-
implementations and the neutral element. Further, we register our predicate at
smtquery.intel.plugin.probes.predicates providing a unique name and the
predicate. Afterwards, the name is directly usable within our query language.

The apply-function, primarily allowing modifications of an AST, requires the
implementation of a base-class defined within smtquery.apply. We provide a
name and the expected behaviour, making sure to return an internal SMT-LIB
object. After the successful implementation, we register this new class within our
PullExtractor by providing its name. Again, afterwards, the apply-function is
immediately usable within the query language.

The extractor allows exporting potentially modified benchmarks in an own
format. SMTQuery allows either printing the converted data directly to the
terminal or redirecting it to a file using smtquery.ui.Outputter. To name a
few examples, we might want to translate the benchmarks into a different for-
mat, export some plot, or obtain a modified SMT-LIB instance. To implement
an extractor, we proceed similarly to the previously seen apply-function and
implement a simple class within smtquery.extract. We provide a name and
a function preforming the export based on our AST using the Outputter. We
again register our new extractor to the PullExtractor by simply providing its
class name, allowing us to use it in the query language. Currently, all data ex-
ported by our extractors is stored in a seperate folder in output located in the
root of SMTQuery.

http://smtquery.github.io
http://smtquery.github.io

20 〈Authors hidden due to double blind review〉

A.2 Using SMTQuery

In this section, we explain the basic commands of SMTQuery and showcase
some applications of SMTQuery ranging from simple to more sophisticated
experiments. This information is also available on our website.

SMTQuery provides a single executable located at bin/smtquery allowing
to access all features of our toolbox by positional arguments. We run SMT-
Query by executing python3 bin/smtquery in the root folder of the project.
In the following, we list the key arguments while more arguments are explained
using the help command.

1. initdb: initializes a fresh database containing all instances stored in the file
system at data/smtfiles.

2. updateResults: runs all available SMT-solvers on all registered benchmarks
and stores the obtained results.

3. allocateNew: iterates through the file system and links new benchmark set
within the database.

4. qlang: invokes an interface to pose queries using qlang.
5. smtsolver: runs an smt-solver on a particular instance, e.g. smtsolver CVC5

woorpje track01 01 track 1.smt runs cvc5 on instance 01 track 1.smt

of track track01 of the woorpje benchmark set.

The next paragraphs list some of the currently implemented predicates, func-
tions, and extractors. The tool is currently under heavily development. Stated
today we offer the following predicates, functions and extractors which will be
extended continuously. We plan to offer a shared platform to exchange custom
implementations of the aforementioned tools.

Predicates. To be used within the Where part of the query. All predicates can
be combined using the common logic connectives, e.g. and, or, and not.

hasWEQ: filters to all instances which contain word equations.
hasLinears: filters to all instances which contain linear length constraints.
hasRegex: filters to all instances which contain regular membership predicates.
isSimpleRegex: filters to all instances which are of the simple regular expres-

sion fragment (see [Berzish et al.(2021a)Berzish, Day, Ganesh, Kulczynski,
Manea, Mora, and Nowotka]).

isSimpleRegexConcatenation: filters to all instances which are of the simple regu-
lar expression fragment with concatenation (see [Berzish et al.(2021a)Berzish,
Day, Ganesh, Kulczynski, Manea, Mora, and Nowotka]).

isUpperBounded: filters to all instances where the syntax of the formula allows
obtaining a length upper bound for each string variable.

isQuadratic: filters to all instances where each string variable is occurring at
most twice.

isPatternMatching: filters to all instances which only contain word equations
of the kind x

.
= α where x is a variable not occurring anywhere else in the

present formula and α is a string (potentially containing variables other than
x).

Mining and Analysing String Constraints 21

hasAtLeast5Variables: filters to all instances containing a least 5 string vari-
ables.

isSAT(s): filters all instances where s ∈ {cvc5,Z3Str3,Z3Seq} declared sat-
isfiable.

isUNSAT(s): filters all instances where s ∈ {cvc5,Z3Str3,Z3Seq} declared
unsatisfiable.

hasValidModel(s): filters all instances where s ∈ {cvc5,Z3Str3,Z3Seq} re-
turned SAT with a valid model.

isCorrect(s): filters all instances where s ∈ {cvc5,Z3Str3,Z3Seq} returned
SAT with a valid model or UNSAT was returned by the majority of used
solvers.

isFaster(s1,s2): filters all instances where s1, s2 ∈ {cvc5,Z3Str3,Z3Seq}
and s1 determined some result quicker than s2.

Functions. To be used within the Apply part of the query.

Restrict2WEQ: removes all other predicates than word equations.
Restrict2Length: removes all other predicates than linear length constraints.
Restrict2RegEx: removes all other predicates than regular expression member-

ship queries.
RenameVariables: renames all variables to a standard format (i.e. str01, int01).
DisjoinConstraints: splits and-concatenated boolean constraints into separate

assertions.
ReduceNegations: shortens sequences of not, keeping the original polarity.
EqualsTrue: simplifies constraints comparing boolean expressions to true.

Extractors. To be used within the Extract part of the query.

MatchingPie: exports result as a pie chart.
CactusPlot: export result as a cactus plot.
SMTPlot: exports the instances visualized as tree diagram.
VarDepPlot: exports the dependency plots of all instances.
ResultsTable: prints the results in terminal.
SMTLib: exports the resulting instances as SMT-LIB files.
Count: prints matching instances count and distribution.
InstanceTable: prints the matching instances and solver’s results.

A.3 Further Examples

Next, we show some examples of benchmark analysis, realizable by our tool.

§ A variable dependency analysis. To speed up the solving process for a
particular string constraint, one might be interested in splitting a formula into
multiple, independent sub-formulae. A relatively näıve way of splitting a formula
is to determine whether the parts of the input formula in which each variable
occurs, and see how they overlap. We can use SMTQuery to visualize the
interactions between variables within a formula, using the AST data structure.

22 〈Authors hidden due to double blind review〉

J

(= (str.++ "efbaeece... (= (str.++ "bdceafbe... (>= (* (str.len J) 3...

H

(= (str.++ "aacfb" (... (<= (* (str.len H) 5...

G

Figure 8: Example variable dependency plot.

Whenever an AST is built starting from an SMT-LIB file, we store the variable
occurrences for each node, which is actually the only information we need to
build a simple variable-dependency graph. So, we have to define the generation
of the corresponding plot by implementing the aforementioned class interface
in smtquery.extract, call it VarDepPlot, and register it, after implementing
the required logic in the PullExtractor. Now we can simply ask a query, e.g.
Extract VarDepPlot From * Where hasWEQ, creating a variable-dependency plot
for each registered instance which contains at least a single word equation.

Posing the query, e.g., have the instance of Listing 1.2 leading to the plot
of Figure 8 where variables G,H and J are top nodes and the corresponding
assertions are to bottom nodes.

1 (set -logic QF_S)
2 (declare -fun H () String)
3 (declare -fun G () String)
4 (declare -fun J () String)
5 (assert (= (str.++ "aacfb" G "abdeddaaa") (str .++ "aacfbdffebaaaaac"

↪→ H "aaa")))
6 (assert (= (str.++ "efbaeecedaaecfceffaffaedfcebcf" J "aeaadcbe") (

↪→ str .++ "e" J "aeecedaaecfceffaffaedfcebcf" J "aeaadcbe")))
7 (assert (= (str.++ "bdceafbededddcfcacffdeaefcfa" J "dbabcdebee") (

↪→ str .++ "bdceafbededddcfcacffdeaefcfa" J "dbabcdebee")))
8 (check -sat)

Listing 1.2: Instance for variable dependency plot

The edges in the figure indicate the presence of a variable, allowing us to
split the instance accordingly.
§ Analyzing the performance of a string solver. To review the performance of a

particular solver, one is usually interested in getting a comparison with respect to
other solvers. SMTQuery allows exporting a summary table and the commonly
used cactus plot to compare string solvers on benchmarks. For instance, we want
to see whether cvc5 is performing well enough on the Woorpje benchmark set.
First, we need to trigger cvc5 on the respective benchmark by executing, e.g.,
Select Name From woorpje where isSAT(CVC5). Then, we can obtain a summary
table by posing the query Extract ResultsTable From woorpje and a cactus plot
by simply changing the extractor asking the query Extract CactusPlot From

woorpje. The results are visualized in Figure 9.
§ Modifying Instances. Analyzing the real-world benchmarks with respect

to to a particular type of constraints can be achieved by simply neglecting all
others. For example, to analyze the structure of the occurring word equations,
one may simply pose the query Extract SMTLib From * Where hasWEQ Apply

Restrict2WEQ to obtain cleaned SMT-LIB files. Naturally, also in this case, we

Mining and Analysing String Constraints 23

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140
Z3Str3
Z3Seq

CVC4

Z3Str3 Z3Seq

↪→
↪→ CVC4

---------------- -------- -------

↪→ -------

SAT 512 604

↪→ 594

UNSAT 170 164

↪→ 164

Unknown 13 0

↪→ 0

Timeout 114 41

↪→ 51

Crash 0 0

↪→ 0

Time w/o Timeout 97.5154 123.816

↪→ 134.242

Total Time 669.859 329.158

↪→ 389.631

Figure 9: Cactus plot and terminal results for an example query.

can use any extraction function implemented to acquire the data which we are
interested in.

§ Finding and analyzing sub-theories. In [Berzish et al.(2021a)Berzish, Day,
Ganesh, Kulczynski, Manea, Mora, and Nowotka] we have analyzed a large set
of benchmarks with respect to regular expression membership queries. This
kind of queries plays a central role in verifying security policies, by allow-
ing to restrict the set of possible input strings by a regular language [Berzish
et al.(2021b)Berzish, Kulczynski, Mora, Manea, Day, Nowotka, and Ganesh]. The
inspection of the respective benchmarks was performed using a sequence of differ-
ent handcrafted scripts, restricted to a particular use case. SMTQuery provides
the means to easily extract this data by simply defining predicates analyzing the
regular languages (i.e., regular expressions) occurring in the benchmarks. For ex-
ample, to gather all instances solely containing regular membership constraints
asking whether a string without variables or a single variable is a member of
a regular expression without complement or intersection is achieved by posing
the query Select Name From * Where isSimpleRegex. The key difference is that
the definition of the particular predicate is much simpler, due to the extendable
structure of SMTQuery. As such, we can now simply combine the acquired
information with newly developed predicates. Since this analysis lead to a well
performing algorithm, presented in [Berzish et al.(2021b)Berzish, Kulczynski,
Mora, Manea, Day, Nowotka, and Ganesh], we are optimistic that our tool can
be used to extract such relevant data, ultimately leading to better techniques in
the area of solving string constraints.

§ Analyzing the structure of instances. SMTQuery also offers the possibil-
ity of a more in-depth analysis of the (syntactic-)structure of the instance. For
instance, knowing that all string variables occurring in a formula are subject to
constant-length upper bounds allows us to rephrase the problem as a constraint
satisfiability problem over finite domains, and ultimately may lead to faster solu-
tions for it. To extract a list of instances having only length-upper-bounded vari-
ables, we can pose the query Select Name From * Where isUpperBounded. The
predicate analyzes the syntax of the constraints and extracts relevant informa-
tion. Another interesting aspect, which can potentially lead to a better choice
of an algorithm for solving a particular instance, is the analysis of its combi-

24 〈Authors hidden due to double blind review〉

natorial structure. For example, if we know that each variable is occurring at
most twice inside a formula, or that each word equation is of the form x

.
= α

where x is a variable not occurring in α nor anywhere else in the formula, we
can use customized solving techniques, and solve the instances more efficiently.
Obtaining such information is done by using the predicate isQuadratic, resp.
isPatternMatching.

References

Berzish et al.(2021a)Berzish, Day, Ganesh, Kulczynski, Manea, Mora, and Nowotka.
Murphy Berzish, Joel D. Day, Vijay Ganesh, Mitja Kulczynski, Florin Manea,
Federico Mora, and Dirk Nowotka. String theories involving regular membership
predicates: From practice to theory and back. In WORDS 2021, pages 50–64.
Springer, 2021a.

Berzish et al.(2021b)Berzish, Kulczynski, Mora, Manea, Day, Nowotka, and Ganesh.
Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea, Joel D. Day,
Dirk Nowotka, and Vijay Ganesh. An SMT Solver for Regular Expressions and
Linear Arithmetic over String Length. In CAV 2021, pages 289–312. Springer,
2021b.

	Mining and Analysing String Constraints

